2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月7日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、在的展開式中,
的系數(shù)是
- A:448
- B:1140
- C:-1140
- D:-448
答 案:D
解 析:直接套用二項(xiàng)式展開公式:
注:展開式中第r+1項(xiàng)的二項(xiàng)式系數(shù)
與第r+1項(xiàng)的系數(shù)不同,此題不能只寫出
就為
的系數(shù)
?
2、下列函數(shù)中,為減函數(shù)的是()
- A:
- B:
- C:
- D:
答 案:C
解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù).
3、在△ABC中,若b=,c=
則a等于()
- A:2
- B:
- C:
- D:無(wú)解
答 案:B
解 析:此題是已知兩邊和其中一邊的對(duì)角,解三角形時(shí),會(huì)出現(xiàn)一解、兩解、無(wú)解的情況,要注意這一點(diǎn).用余弦定理可得
解出
4、若tanα=3,則
- A:-2
- B:
- C:2
- D:-4
答 案:A
解 析:
主觀題
1、已知數(shù)列的前n項(xiàng)和
求證:
是等差數(shù)列,并求公差和首項(xiàng)。
?
答 案:
?
2、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖,
∵∠C=180°-30°-75°=75°
∴△ABC為等腰三角形,則AC=AB=120m
過C做CD⊥AB,則由Rt△ACD可求得CD=
=60m,
即河寬為60m
?
3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
4、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為
由題意得l的方程為
因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為
(II)由
,得
設(shè)A(x1,y1),B(x2,y2),則
因此
填空題
1、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?
答 案:
解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,
當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,
2、長(zhǎng)方體的長(zhǎng)、寬、高分別為2,3,6,則該長(zhǎng)方體的對(duì)角線長(zhǎng)為()
答 案:7
解 析:由題可知長(zhǎng)方體的底面的對(duì)角線長(zhǎng)為,則在由高、底面對(duì)角線、長(zhǎng)方體的對(duì)角線組成的三角形中,長(zhǎng)方體的對(duì)角線長(zhǎng)為