2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月6日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、設(shè)集合M={x||x-2|<1},N={x|x>2},則M∩N=()
- A:{x|1<x<3}
- B:{x|x>2}
- C:{x|2<x<3}
- D:{x|1<x<2}
答 案:C
解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}
2、將一顆骰子拋擲1次,到的點(diǎn)數(shù)為偶數(shù)的概率為 ?
- A:
- B:
- C:
- D:
答 案:D
解 析:一顆骰子的點(diǎn)數(shù)分別為1,2,3,4,5,6,其中偶數(shù)與奇數(shù)各占一半,故拋擲1次,得到的點(diǎn)數(shù)為偶數(shù)的概率為
3、設(shè)α是第三象限角,若,則sinα=()
- A:
- B:
- C:
- D:
答 案:D
解 析:由于,而α為第三象限角,故
4、過點(diǎn)P(2,3)且在兩軸上截距相等的直線方程為() ?
- A:
- B:
- C:x+y=5
- D:
答 案:B
解 析:選項(xiàng)A中,在x、y 軸上截距為 5.但答案不完整 所以選項(xiàng)B中有兩個(gè)方程,
在x軸上橫截距與y軸上的縱截距都為0,也是相等的
選項(xiàng)C,雖然過點(diǎn)(2,3),實(shí)質(zhì)上與選項(xiàng)A相同.選項(xiàng) D,轉(zhuǎn)化為:
答案不完整
?
主觀題
1、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
2、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)
時(shí),f'(x)
單調(diào)遞減,在區(qū)間
單調(diào)遞增.因此f(x)在
時(shí)取得極小值
3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得
所以AB =4.因此
所以
4、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)寫出向量
關(guān)于基底{a,b,c}的分解式
(Ⅱ)求證:
(Ⅲ)求證:
?
答 案:(Ⅰ)由題意知(如圖所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直
?
填空題
1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?
答 案:
解 析:由于a//b,故
2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?
答 案:
解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,
當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,