12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年10月06日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年10月06日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/10/06 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月6日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。

單選題

1、設(shè)集合M={x||x-2|<1},N={x|x>2},則M∩N=()

  • A:{x|1<x<3}
  • B:{x|x>2}
  • C:{x|2<x<3}
  • D:{x|1<x<2}

答 案:C

解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}

2、將一顆骰子拋擲1次,到的點(diǎn)數(shù)為偶數(shù)的概率為 ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:一顆骰子的點(diǎn)數(shù)分別為1,2,3,4,5,6,其中偶數(shù)與奇數(shù)各占一半,故拋擲1次,得到的點(diǎn)數(shù)為偶數(shù)的概率為

3、設(shè)α是第三象限角,若,則sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由于,而α為第三象限角,故

4、過點(diǎn)P(2,3)且在兩軸上截距相等的直線方程為() ?

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:選項(xiàng)A中,在x、y 軸上截距為 5.但答案不完整 所以選項(xiàng)B中有兩個(gè)方程,在x軸上橫截距與y軸上的縱截距都為0,也是相等的 選項(xiàng)C,雖然過點(diǎn)(2,3),實(shí)質(zhì)上與選項(xiàng)A相同.選項(xiàng) D,轉(zhuǎn)化為:答案不完整 ?

主觀題

1、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.

答 案:由已知得解得

2、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)時(shí),f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時(shí)取得極小值

3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.

答 案:由△ABC的面積為所以AB =4.因此所以

4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?

填空題

1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?

答 案:

解 析:由于a//b,故

2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?

答 案:

解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?